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Abstract—Real AdaBoost (RAB) ensembles have demonstrated resampling and weak learners. In any case, other expemnent
exceptional classification capabilities, plausibly because they studies discovered overfitting —see [16]-[19], for example—,
construct and combine weak learners that paying attention to mainly in cases in which there are samples that result glearl
samples that are more difficult to label at each step. However, . - . .
they use a fixed linear combination of these learners, which can m'SSdaSS_'f'ed' Thls fact prompted the appearance of asserie
be a limitation for their expressive power. On the other hand, Of works introducing methods to reduce this problem: Freund
Mixtures of Experts (MoE) can easily include powerful gates to himself [20] proposed to eliminate the samples of this type;
combine very simple learners, although they suffer from learning in [15], [21]-[23] different forms of soft-margin and regul
difficulties for classification purposes. rization are analyzed. The consistency (convergence te8ay

In this paper, we propose to increase the capabilities of . . T . g
standard RAB architectures replacing their linear combinations "1SK) Of regularized boosting is discussed in [24]; recgritie

by a fusion controlled by a gate with fixed kernels. Experimental @uthors of [25] proved that AB is almost surely consistent
results in a series of well-known benchmark problems support if its growing is stopped early enough. Other approaches
the effectiveness of this approach to im_proye classification pG_If- reducing the sensitivity of boosting algorithms with resp®
mance. Although the need of cross-validation processes obviously|a a1y misplaced samples can be found in [26], where the dat
leads to higher training computational effort, operation load is . .
never much higher, and in some cases it results even lower than jgkewnessl's Pe“a_"z?d to prevent the eﬁ?C,tS.Of these sgmple
that of competitive RAB schemes. in [27], which maximizes the mean and minimizes the variance
of the margin; in [28] [29], that replace the MM cost terms
by adjustable combinations of quadratic error and proximit
to the decision border; and in [30], which uses controlled
subsampling to reduce the problem.

There is a large quantity of boosting algorithms that are
A. Preliminaries modifications of basic AB and RAB. To mention just a few:

Ensemble classifiers are deserving much interest becali§@se based on the idea of leveraging [31], presented in [32]
they allow a relatively easy design and offer a high pef33]; DOOM (Direct Optimization Of Margin) [34]; Any-
formance. Some of their architectures permit to understaB@ost and MarginBoost [35]; formulations to accommodate
how decision are made better than standard neural netwotigear classifiers as learners [36] [37]; methods that ekplo
Detailed discussions of their general characteristicstangde the vision from a logistic regression perspective [38] and
of their main families can be found in [1]-[3]. using stochastic search for residual fitting [39]; costs#are

Among ensemble classifiers, boosting algorithms exhittgorithms [40]; procedures for optimally boosting cléisss
exceptional capabilities. Based on the potential of coingin [41]; and algorithms resulting from dual formulations [42]
weak learners, they were formulated for the first time undéhere are versions for imbalanced data problems [43] and for
a filtering form [4], after which the principled construaiv semisupervised learning [44] [45]. Boosting has been used t
technique with binary output learners called AdaBoost (AB)elect kernels [46] [47]. Finally, it is worth saying thaetk are
was proposed [5]. Real AdaBoost (RAB) [6] extended thi&gcent works that combine boosting with other techniques —
idea to real-valued output learners. From its very begigninwith nonlinear projections [48] or with Rotation Forest9]4
boosting was considered a fundamental contribution; Baeimfor example—.
said that it was the most significant development of the 1990sAnother important family of ensembles that has deserved
decade in designing classifiers. attention is Mixtures of Experts (MoE) [50]. When considerin

A singular characteristic of boosting techniques is their rregression problems, they are based on assuming a Gaussian
sistance to overfitting, experimentally found in severatkgp Mixture model with a linear mean for the “a posteriori”
such as [7]-[12]. A number of authors, including the propsseprobability of the unknown variable and a softmax linearnfor
of boosting [6] [13], considers that this advantage comemfr for the mixing coefficients. Using Maximum Likelihood (ML)
their connection with Margin Maximization (MM). On theas the objective to parameterize these models seems to be

contrary, Breiman [14] [15] supports that it is due to usingnough to control overfitting. The formulation for classific
tion is obtained by using the exponential form of the target
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more powerful gates such as MLPs [56]-[58] or includingf overweighting clearly wrongly classified samples. Ndtatt
attentional mechanisms for fusion [59]. the gate has to be trained just for fusion purposes; in other
MoE are related to stacking [60], and there are severase, we would tend to work with stronger learners. Since
modifications of them, such as those presented in [61] [62he excellent results provided by arcing ensembles (inctud
Among these modifications, there are constructive versiobgosting schemes) can be attributed to emphasizing weak
[54] [63] as well as temporal schemes [64], and procedurksarners training and, after it, combining them, to exploog/
that use Dirichlet processes mixtures or as priors [65].[B8} a locally gated RAB machine works is definitely interesting.
rameterization algorithms using global searches are gegpo In fact, we obtained promising preliminary results followi
in [67]-[69]. The consistency of MoE classifiers using ldigis this research line [83].
regression units has also been studied in [70]. The rest of the paper is organized as follows: In Section I,
MoE offered satisfactory results in may practical applicawe introduce the general structure of the proposed claasific
tions such as speech recognition [53] [62], time seriesyaigl tion ensemble, discussing how to train its learnable parensme
[56]-[58] [64] [71] [72], handwritten character recogoii and different possibilities to select its design paransetsr
[61] [62] [68], AIDS prognosis [73], and face recognitionmeans of cross-validation (CV). Section Il describes the
[74]. Nevertheless, contributions to MoE literature arssle experimental framework, shows the simulation results, and
frequent in recent years, maybe because the great successooiparatively discusses the performance of the new ensembl
other ensemble families, such as boosting methods. Hoywewegithout forgetting sensitivity and computational load esis.
MoOE bases are solid, and MoE concepts, useful. They hdvimally, Section IV presents the conclusions of our work and
been used to mix MM trained linear classifiers [75]; in [76]suggests some further research directions.
the authors reorder the MoE basic formula to obtain a similar
but more compact architecture which can be trained with MM |, 5 AT CONTROLLED FUSION REAL ADABOOST

algorithms. (GCF-RAB)

A. The basic structure

B. The conceptual bases of the proposed ensemble architec- . _ T -
ture To avoid serious algorithmic difficulties in training and an

) excessive operation load, a common gate body consisting of

The fusion scheme of AB's and RAB's weak learners igayssian kernels with selected centroids will be used for al
a linear combination by means of weights that minimizge fusion steps, its output weights being trained for each
an exponential margin error and are easily calculated. Thigoch.
may limit the ensemble performance when using global weakye will consider binary problems. Then, we have the output
learners -such as trees and simple MLPs, that are frequeRf{he ensemble of” learners is
boosted-, because the overall ensemble architecture és als
purely global.

Using local learners can alleviate this limitation. SeVera
studies have considered stumps as learners. In [77], lsarne
specialize in different regions.a&sch et al. [78] analyzed thewherea; and f; € [—1,1] are the overall gate and the base
effects of using local learners. In [79], localization issbd on learners output at round, respectively. Decision is made
applying local likelihoods, while in [80] kernels are indied according to A
in learners. A local error measure is applied in [81]. These d(x) = sgn[Fr(x)] 2
approaches demonstrate some advantages, but it seems clear _ ) )
that using local learners does not serve “per se” to lim{fNere sgn is the standard sign function.
the negative effects of strongly emphasizing clearly exours Base learners are trained in theLconventmnaI RAB form
samples. using the labeled data s¢i(V,d®} ", where {x()} are

On the contrary, MoE include a trainable gate, a mot@€ samples andd") € {+1}} their targets, respectively.
sophisticate and powerful fusion technique. Consequeinty Each base learner is parameterized to minimize the weighted
tempting to try to obtain a further increase of the capaedit Squared error
of boosting schemes by replacing their linear combinatipa b L 9
trainable gate. In fact, this was explored in [82] as an fieza E, = Z Dy (1) {d(l) - ft(x(l))} ©)
construction of a functional convex combination, but unaer =1
ML parameterization.

Following this idea, in this paper a new boosting approa
including a gate network in the learner fusion process is Dy ()exp[—ay(xD) fi(xD)d W]
introduced. This new method, called Gate Controlled Fusion Dia(l) = Z, )
RAB (GCF-RAB), will retain the good properties of standard
RAB algorithm but it would provide the ensemble improveavhereZ, is a normalization factor to forcg);” , Dy+1(I) = 1,
convergence and generalization capabilities. As we will eRnd the process starts wilh, (1) = 1/L, V.
plain later, a local gate with intermediate expressive page As above said,
an attractive option, because it can serve to reduce theteffe o (x) = wi a(x) (5)

T
Fr(x) = Z o (x) fe(x) (1)

c% being the well-known RAB emphasis function
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Fig. 1. (a) Real AdaBoost architecture; (b) Gate Controffedion Real AdaBoost architecture.
where w, is the output weight vector of the gate for base .exp [fd(l')Ft(x(l/)) a(x!)) (10)

learner f,, and a(x) = [ag(x), ai(x), ... ,an(x)]" the
output vector of the Gaussian functions of the gate bodyan be applied to samples cyclically ordered (indlgx
having elements

1, n=>0

a’ﬂ(x) = { 2 2
—||x - <n< . . . . .
exp( IPe = enll”/20m ) , lsns N Training centroids and dispersion of exponentials has been

{c,} being the centroids, that are separately selected, df'sidered a difficult task, and most the corresponding ma-
{0,2} the dispersion parameters, that can be selected ciine designs have been based on defining them by means of
explained later. Fig.1 shows the proposed GCF-RAB arcld-Separate procedure. For regression, after the pioneging
tecture, comparing it with the standard RAB. Learnirg is posal of Moody an.d Darken [84], suggesting to select K-means
carried out to minimize the overall cost function of the RAB/ECtOrs as centroids, a large number of proposals appeared:

©6) B. Selecting centroids

algorithm A sequential selection based on Orthogonal Least Squares
1L (OLS) [85], constructive methods like resource alloca{i®]
By =—) exp {—d(l)Ft(x(l)) (7) and growing cell structure [87], and some refined clustering
L 1=1 algorithms [88] [89], among others.
where F(x) is the partial ensemble obtained at epach In the case of decision machines, things are different

because border location is important. In fact, although RAB
t . . .
emphasizes erroneous samples, the resulting machinesefibcu
Fi(x) = Z v (x) fr (x) = Fra (%) + au(x) fu(x)  (8) mainly in examples that are near the classification bor®&k |
=1 [91] and [92] select centroids among clustering represierta
The reason for adopting this cost is to retain the goagctors; considering methods that select sample vectors as
generalization properties of the classical RAB algorithm.  exponential function centroids, [93] presents a seriesostp

Since o o bilities after a first cluster selection, while [94] propege use
gexp[—dV Fy(xV)] _ just the support vectors of Support Vector Machine designs.
owy The idea of usingK-Nearest NeighborsA-NN) algorithms

to select samples according to their proximity to the border
and their easy classification appears in [95]-[98]; herewille
start from it for designing our machine ensembles.

In [95], Shin and Cho introduce two quantitative measures
wi(l' +1) = wy (I') + nd®) f,(xE). to be used for selecting data, “proximity’yr(x()), and

= —d0 f,(x)exp[-dV F,(x)] ax") (@)

the stochastic descent algorithm



“correctness”co(x!)). These measures are obtained frém
NN based estimates of the probabilitiesdf) belonging to
classj (j € {£1})

where(,, is the corresponding set of samples andd
indicates cardinality. Scale factercan be determined
by means of CV.

- The second directly uses as dispersion the sphere radius
(h) of the APC-III algorithm (which also requires a CV
process).

K.
Pi(x®y = 21

(%) K
K and K; being the total number of nearest neighbors
considered and the number of these belonging to cjass
respectively.

It is obvious that

pr(x®) =" Pi(x")log,
;

II1. EXPERIMENTS AND THEIR DISCUSSION

In order to evaluate the performance of the proposed
method, we will apply it to some well-known benchmark
1 (11) problems with different characteristics (size, dimensiand
P;(x®) difficulty) and compare the obtained results with those pro-

o ) . “vided by a standard RAB ensemble.
is higher for samples whose neighbors have mixed labels, i.e

for samples that are near the classification border, while A. Benchmark problems

co(xW) = P,y (x1) (12)  We consider eight problems. Two of them are synthetic,
Kwok [100] and Ripley [101], and the other six are real data
sets, five from the UCI repository [102] (Abalone, Breast,
Contraceptive, Hepatitis, and lonosphere), and one fr@8][1
Crabs. Table | shows their main characteristics (D: dinmnsi
Li/L_1: number of samples) for the training and the test sets.

@blems are named with their first two letters.

is the estimated probability of a correct classificationk8f.
Preselecting those samples that offer
1
pr(x¥)>0 and co(xV) > 5 (13)
is a satisfactory mode of selecting reasonable (near to fA
border and relatively easy to classify) candidates to sas/e
Gaussian centroids.
To complete the selection of centroids avoiding to include

TABLE |
MAIN CHARACTERISTICS OF THE BENCHMARK PROBLEMS

samples that appear in the same regions of the observation Problem | D | Li/L_; Train | Lp/L_, Test
space, we apply the Adaptive Pattern Classifier 11l clustgri
algorithm [99] ideas. For each class, the first centroid & th Ab 8 1238/1269 843/827
preselected sample which shows the highest proximity yalue Br 9 1451275 96/183
all the samples in a sphere of radiusround it are eliminated, Co 9 506/377 338/252
and the process is iterated until no more samples are aleailab Cr 7 59/61 41/39
The value ofh can be obtained by means of CV & in He | 19 70123 53/9
the expression lo 34 101/100 124126
Kw 2 300/200 6120/4080
Ri 2 125/125 500/500

L
1 1
hRL;Hx(” 7x;>NHQ (14)

wherex (), indicates the nearest neighborof).

With respect to the value ok, a possible option is to
select it by CV. To reduce the design computational effor&-
the empirical procedure of [96] can be used. This procedug
consists of applying an-NN classifier on the training set; .
then, K is iteratively increased until the number of preselect
samples according to (13) is not less tidn”., where P, is
the 1-NN estimate of the classification error probability.

C. Trainable parameters

C. Selecting the dispersion parameters

B. Versions of the GCF-RAB algorithm

We consider the two strategies presented above to define
spersion parameters, calling them S1 and S2. WHRers
lected according to the empirical rule given in [96], we
indicate the corresponding reduced versions as S1(R) and
2(R), respectively.

Both RAB and GCF-RAB ensembles have Multi-Layer Per-

ceptrons (MLPs) with one simple hidden layer &af neurons
We will consider two different strategies to select thas base learnerd/ being established by means of CV. Each
dispersion parameters: MLP is trained with the standard Back-Propagation algarith
- The first is accepting dispersion values that are pré minimize (3), initializing all the weights at random vehl
portiona| to the average Euclidean distance betv\@gn from a[—0.2, 02] uniform diStribUtion, while the Iearning rate
and all samples that are nearer to it than to the rest i both layers linearly decrease from 0.01 to O along 100
centroids, i.e. epochs, that are enough to reach convergence. An 80/20 early
stopping mode is applied to stop training.
With respect to gate weights, they are randomly initialized
with values of a[—0.05,0.05] uniform distribution, and a

1
Yy W _ H
rcard Ch Z HX on 2

xWel,

(15)



TABLE I
CLASSIFICATION ERROR RATES(CE) PROVIDED BY RAB ENSEMBLE AND THE DIFFERENT APPROACHES OF THE PROPOSEBCF-RABALGORITHM.
THE NUMBER OF LEARNERS(7") AND THE PARAMETERS CHARACTERIZING EACH ENSEMBLE ARE ALSO IELUDED.

RAB GCF-RAB
S1 S2 S1(R) S2(R) Omniscient
M M/N/K/R/r M/N/K/R M/N/K/R/r M/N/K/R M/N/K/R/r
CE(%) | 19.4£0.02 19.1+ 0.3 19.34+0.3 19.1+ 0.3 19.3£0.3 19.0+£0.4
Ab T 31.2+04 16.3+0.4 30.5+£0.9 19.0+0.4 29.2£0.8 16.0 £ 0.5
Param. 4 2/50/6/6.2/1 2/7/6/34.5 2/7/4/34.5/1 2/7/4/34.5 | 2/405/10/1.0/2.5
CE(%) 2.6+04 224+0.3 23+£04 24403 24+0.5 22+0.3
Br T 21.3+4.2 16.1+£0.8 18.0 £ 1.2 18.2+0.7 326 £1.0 16.4+1.3
Param. 6 2/18/8/11.3/3.5 | 2/18/2/1.0 2/4/3/24.2/1 6/7/3/11.3 | 2/10/4/11.3/3.5
CE(%) | 29.0+0.2 27.44+0.8 28.1+£0.8 28.2+£0.8 28.2£0.8 27.4+£0.5
Co T 33.7+£0.7 21.7+1.1 29.7+0.7 299+14 304+12 21.4+0.5
Param. 2 2/165/3.6/3.5 2/8/4/34.5 | 2/48/2/11.3/1 | 2/17/2/24.2 | 2/21/4/21.6/3.0
CE(%) 25+0.0 25+0.0 25+0.0 25+£0.0 25+0.0 2.5+0.0
Cr T 11.14+0.8 16.1 +0.5 8.1+£0.2 19.3+0.6 31.5+£0.9 16.1 +£0.4
Param. 2 2/34/8/1.0/1.5 | 2/11/2/1.0 2/7/2/1.0/1 2/7/2/1.0 2/11/2/1.0/1
CE(%) 89+1.8 8.1+ 1.9 84+1.8 85+ 1.5 8.5+ 1.7 77+ 1.3
He T 22.2+£3.9 15.6 +1.8 18.7+2.5 16.9+1.9 27.5£2.0 16.1+1.1
Param. 17 4/20/4/3.6/4 4/3/2/21.6 | 6/2/2/39.7/0.5 | 4/2/2/31.9 4/2/6/26.8/2
CE(%) 4.5+0.9 40+1.0 4.24+1.7 4.1+1.5 40+£1.6 3.8+1.8
lo T 222424 173+ 1.7 24.9+1.9 19.1+54 26.9 £+ 3.6 17.7+£4.3
Param. 5 2/10/6/34.5/3 | 2/66/10/1.0 | 2/8/2/26.8/2.5 | 6/21/2/6.2 | 4/66/10/1.0/2.5
CE(%) | 11.7£0.01 11.7+£0.2 11.7+ 0.1 11.7+£0.2 11.7£0.2 11.7£0.1
Kw T 29.3£0.1 19.8+1.1 29.0+1.2 28.8 +£1.2 36.3+14 20.5+1.1
Param. 15 2/4/6/31.9/2 2/7/10/16.5 | 4/4/2/31.9/1 4/4/2/42.3 | 2/10/4/11.3/3.5
CE(%) | 9.7£0.01 8.5+0.2 8.6 £0.3 9.1£0.2 9.2+0.3 84+0.3
Ri T 28.9 £0.2 17.9+0.6 25.6 £0.5 24.2+23 33.4+£0.7 17.8 £ 0.5
Param. 48 2/31/10/1.0/2 6/10/4/6.2 | 6/5/2/21.6/0.5 | 2/6/2/16.5 6/31/10/1.0/2

learning rate of 0.01 is used for their stochastic gradiente r (scale factor for the first strategy to select dispersion
updating 100 epochs are enough for convergence. parameters): from 0.5 to 5 in 0.5 steps.

To stop the ensemble construction, we apply to RAB thgg extensions of these margins are needed except for param-
criterion successfully used in [29], selectiiigas the first value gter A7 in the RAB algorithm and Ri problem, which needs

for which T an extension up to 60.
Doter_9 Ot C 16
AT "o
) o =1 o E. Results and their discussion
where C' is empirically set to 0.1. Similarly, we use for the o )
GCFE-RAB Table Il shows the Classification Erraf’ ) rates obtained
E?:ng o , from averaging the results corresponding to 50 design runs
ZTi <C (17) (of MLPs) for each ensembles using the parameters given by
=17t the CV processes, that are also given, as well an the average
with C’= 0.3, where number of learnersi(). For CE andT, both average values
L and standard deviations are included. Best results areatatl
Ve = Z D,()F, (X(l))d(l) (18) inboldface. It can be seen in Table Il that none of the progose
=1 GCF-RAB algorithms offers a worse performance than the

which, when the learners are not able of classifying the mdi@nventional RAB. As expectable, Version S1 gives the best
fgsults, with the highest differences when compared to RAB

emphasized (erroneous) data, takes low values and harl , i X
changes. fof problems Br, He, lo, and mainly Ri, while RAB pnly
provides an equivalent performance for Cr and Kw. Version S2
) ) offers slightly worse results than Version S1, but, we répea
D. Selection of design parameters never worse than RAB. This quality reduction can be attafut
A 50 runs, 5-fold cross-validation (CV), is used to selegb the fact of restricting Gaussian dispersion parameters t
the nontrainable parameters; these parameters are expforejust the same value of. Finally, (reduced) Versions S1(R)
the following margins: and S2(R) provide, in general, worse performance resuis th
e M (number of hidden units of MLPs): from 2 to 10 inVersions S1 and S2, respectively (but S2(R) is better than S2
unitary steps; for l0), but, again, never worse than RAB, although the direc
o K (number of nearest neighbors in non-reduced strat@ay of establishingk™ limits their quality.
gies): 2,4,6,8,10 and 12; So, we can conclude that, generally speaking, the idea of
« R (scale factor forh): from 1 to 50 with 20 equal steps;introducing a gate to combine learners’ outputs under a RAB
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Fig. 2. Classification error rate’(F) evolution along training epochs for conventional RAB an@FSRAB methods S1 and S2 for problems Co(a), Ab(b),
Kw(c), and Br(d).

formulation serves to improve the performance of the résult sensitivity of the proposed designs with respect to all éhes
designs. Obviously, this is not for free, since trainingegat parametersX/, h or N, K for S1 and S2, and for S1 and
weights and, specially, the costly CV process greatly imsee S1(R)) is a difficult task. However, the possibility of using
the design computational effort (several orders of mageifu the concept of “omniscient” machines serves to carry out a
This is the prize for improving the excellent results of RABufficient analysis.

ensembles. Nevertheless, it can be seen also in Table Jiithat
many cases, the GCF-RAB designs require a lower (avera?se
number of learners and a lower number of hidden neurons
the MLP learners. Since each complete learning element o
GCF-RAB consists not only on the corresponding MLP, b%lu
it includes the gate multiplications, more detailed cadtiohs
are needed to check if there is also computational advant
in the operation phase, i.e., when the ensembles are use
classify new patterns. These calculations are presented.be

ﬁAn “omniscient” machine —obviously not a valid design—

a machine where non-trainable parameters are selected

Jcording to the measured performance in the test set.ri the

small differences between the corresponding parameter

es and those values obtained from CV, the CV process

has been fully successful. If there are differences but the
] formance is similar, it is a symptom of CV difficulties due

0'3 relatively flat error surface considered as a functiothef

CV parameters, but the resulting designs can be considered

acceptable —their performance is good enough—.

F. A look to sensitivity problems The last column of Table Il shows the characteristics of

Although the proposed designs exhibit an excellent peghe omniscient ensembles for the more delicate family of
formance, it is adequate to analyze if the always delicatiesigns, Version S1. Itis clear that a completely succe€3fu
CV processes introduce some degree of lack of robustnessinot be claimed, since there appear significant diffeenc
with respect to the corresponding parameters. To study thetween parameter values. However, it is also evident that



performance differences are irrelevant for Br, Co, Cr, amg Kthe corresponding number of multiplications and, if Look-

nearly irrelevant for Ab and Ri, and not so important for H&p-Tables (LUTS) are not used to obtain the outputs of the

and lo. Consequently, we can conclude that the design methadnlinear transformations, the number of such transfdonat

that have been followed for the proposed GCF-RAB ensemlifidote that we do not distinguish between exponentials and

architectures show a satisfactory degree of robustness.  sigmoids, which is in favour of standard RAB schemes).
With respect to the number of multiplications:

G. F:onverge.nce _ _ _ « To obtain the argument of each gate elemé&ntultipli-
Since we include a trainable fusion scheme, there is the cations are needed for the squared distance, and the result
possibility of having more intensive convergence problems has to be multiplied byl /202. So, a total number of

with CGF-RAB methods than when applying conventional N (D+1) multiplications are necessary for each ensemble
RAB. So, to check how convergence believes along training  step.

epochs is interesting. « To get each output of the gatd] additional multiplica-
In Fig. 2, we show how” E evolves for four representative tions are needed.
problems: « An MLP with M hidden neurons required/D (input
« Co (He is qualitatively equivalent) layer) plusM (output layer) multiplications.
« Ab « For standard RAB schemes, one more multiplication (by
« Kw (Cr and lo are qualitatively equivalent) ;) is needed for each step. The same is true for GCF-
« Br (Ri is qualitatively equivalent) RAB ensembles if we add gate element outputs before
for conventional RAB and proposed methods S1 and S2, that multiplying.
are the most relevant. Thus, if T is the number of base learners, a RAB ensemble

Generally speaking, convergence problems do not apP&edsT(M(D +1) +1) products, and a GCF-RAB ensemble
and the (average) stopping epochs seem to be reasonablerequiresT(M(D +1)+ N +1)+ N(D + 1) products.

In the case of Co, convergence curves show the usual formsyapie |11 A shows the average values corresponding to
and it is clear that the advantage of S1 and S2 appears VR{Y gesigns we have obtained for the eight problems under
early. The stopping points reveal the advantage of the newy is” Note that, if LUTs are used, those values indicate
methods with respect to conventional RAB with respect @ ¢jassification computational load.
the number of learners. However, let us remark that this does; ig easy 1o see that standard RAB architectures requiee les
not mean that S1 and S2 learning is easier than training, A sinjications to classify a new sample for problems Co and
conventional RAB. On the contrary, the neeQ; of establgshna:r' and also less than S1 for Ab and less than S2 and S2(R)
the number of gate RBFs by CV and of training gate outpgl, ;o | a|l the other cases, GCF-RAB ensembles need less
weights at each step lead to a clearly higher computationg],sipjications than standard RAB (note that the best cases
effort to train S1 and S2 architectures. Even the operatied | ¢, in boldface). Thus, a computational advantage of the

—i.e., the computational effort which is needed to classify ﬁroposed designs is not unexpectable, but it seems to appear
new sample— does not depend only on the number of 'eamefFéquently.

because there are calculations related to the gate. Sise@it |t ,njinear transformation values are calculated, the com

be observed in Table II that the complexity of learners i® al$, \iational load has an additional component which depends o
usually lower for GCF-RAB methods than for conventlonqlne number of nonlinear elements included in each machine

RAB, a more detailed evaluation is necessary. We preseant tghsemble‘ i.eq’(M+1) for RAB andT'(M +1)+N for GCF-

evgluati%n I_ater. blem Ab. th | kable diff RAB designs. Table Ill.B shows the corresponding values.
onsidering problem AD, the only remarkable difference Is Although to provide a good comparison in this case requires

that the advantage of S1 with respect to RAB needs a relati[\()e know an equivalent number of multiplications for each

high numbers of training epochs to appear. : S . . ;
- . nonlinearity (in the practice, a relatively high numbeoy, the
Kw: shows that initial RAB convergence is faster tha'%roblems and designs we are considering things are rdiative

those of S1 and S2. Although the stopping criterion leads Qar. With the only possible doubt of S1 for Ab, GCF-RAB

more epochs. for conventional R.AB’ it can be seen that N€Q3ssifications are computationally less expensive thai RA
optimum designs could be obtained very early.

for Ab, He, Kw, and Ri, and some of them also for Br

m;:r;rc]:zléylarBer ggr\;ii;hgvl tihsatbter;teeroi);:rr\]alsges;%rés sze r[)oefg'peg lo. The only problems that lead to less computationally
. . ' . gmanding RAB architectures are Co and Cr (note that Cr is a
than conventional RAB). However, is must be emphasize

S . o ri which origin igns of | performan
that S1 training shows a relatively clear effect of overfiti curious case ch originates designs of equal perfornjance

S . . According to the above, it can be said that GCF-RAB
This is probably due to the high expressive power of the o o
L o ensembles offer the possibility of obtaining not only bette
learner-gate combinations. Consequently, some vigilaoce

avoid overfitting must be applied in the design processes %?rformance, but even less classification effort in conspari
. with standard RAB schemes.
the GCF-RAB machines.

H. Classification load IV. CONCLUSIONS

A reasonable estimate of the computational effort which This paper proposes a new approach to include a kernel
is needed to classify a new sample comes from consideritype gate to combine learners’ outputs in a Real AdaBoost



TABLE Il

NUMBER OF MULTIPLICATIONS AND NUMBER OF NONLINEAR FUNCTIONSTO CLASSIFY A NEW PATTERN BY EACH ENSEMBLE

A. Number of multiplications B. Number of nonlinear functions
Problem | RAB GCF-RAB RAB GCF-RAB
S1 S2 S1(R)  S2(R) S1 S2 S1(R) S2(R)
Ab 11544 | 15747 8560 557.0 8822 156.0 98.9 985 64.0 94.0
Br 12993 807.9 8820 4950 22868 1491 66.3 720 58.6 2352
Co 7077 56862 9413 25431 13252 1011 2301 971 1377 1082
Cr 1887 10931 3148 5192 812 333 82.3 353 64.9 1015
He 75702 | 19756 16308 21187 23225 | 3996 980 965 1203 1395
lo 39072 | 17513 57213 17889 69758 | 1322 619 1407 653 2093
Kw 13478 | 2298 427.0 5016 6291 4688 634 940 1480 1855
Ri 41905 7732 7724 5958 4521 14161 84.7 1892 1744 1062

ensemble construction, leading to the Gate Controlleddrusi [g]
Real AdaBoost ensembles. The advantages of this proposal
has been experimentally checked for a series of different
design procedures, obtaining systematically positivevans.

This way, one more method to cope with Real AdaBoost
intrinsic limitations has been made available. Additibpal
the robustness of the corresponding designs, that need a
computationally costly Cross-Validation process, has bsen  [10]
checked.

The price for increasing the already good performance of
Real AdaBoost algorithms is an important increase in thé&ll
design computational effort (up to several orders of magnirlz]
tude), mainly due to Cross-Validation explorations. Hoergev
a detailed analysis has shows that, in many cases, the ioperat(13]
load (computational effort to classify new samples) of the
proposed ensembles is lower than the load of conventiongals
Real AdaBoost algorithms.

Besides the opportunities of improving the particular de
signs that are proposed here, their base —to combine strongj
aspects of Real AdaBoost and Mixtures of Experts— opens the
door for investigating other principled procedures to corab [17]
local and global (weak) learning machines.

[15]
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