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Abstract—Real AdaBoost (RAB) ensembles have demonstrated
exceptional classification capabilities, plausibly because they
construct and combine weak learners that paying attention to
samples that are more difficult to label at each step. However,
they use a fixed linear combination of these learners, which can
be a limitation for their expressive power. On the other hand,
Mixtures of Experts (MoE) can easily include powerful gates to
combine very simple learners, although they suffer from learning
difficulties for classification purposes.

In this paper, we propose to increase the capabilities of
standard RAB architectures replacing their linear combinations
by a fusion controlled by a gate with fixed kernels. Experimental
results in a series of well-known benchmark problems support
the effectiveness of this approach to improve classification perfor-
mance. Although the need of cross-validation processes obviously
leads to higher training computational effort, operation load is
never much higher, and in some cases it results even lower than
that of competitive RAB schemes.

Index Terms—Classification, neural networks, ensembles, Real
AdaBoost, Mixtures of Experts.

I. I NTRODUCTION

A. Preliminaries

Ensemble classifiers are deserving much interest because
they allow a relatively easy design and offer a high per-
formance. Some of their architectures permit to understand
how decision are made better than standard neural networks.
Detailed discussions of their general characteristics andthose
of their main families can be found in [1]–[3].

Among ensemble classifiers, boosting algorithms exhibit
exceptional capabilities. Based on the potential of combining
weak learners, they were formulated for the first time under
a filtering form [4], after which the principled constructive
technique with binary output learners called AdaBoost (AB)
was proposed [5]. Real AdaBoost (RAB) [6] extended this
idea to real-valued output learners. From its very beginning,
boosting was considered a fundamental contribution; Breiman
said that it was the most significant development of the 1990s
decade in designing classifiers.

A singular characteristic of boosting techniques is their re-
sistance to overfitting, experimentally found in several works,
such as [7]–[12]. A number of authors, including the proposers
of boosting [6] [13], considers that this advantage comes from
their connection with Margin Maximization (MM). On the
contrary, Breiman [14] [15] supports that it is due to using
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resampling and weak learners. In any case, other experimental
studies discovered overfitting —see [16]–[19], for example—,
mainly in cases in which there are samples that result clearly
missclassified. This fact prompted the appearance of a series
of works introducing methods to reduce this problem: Freund
himself [20] proposed to eliminate the samples of this type;
in [15], [21]–[23] different forms of soft-margin and regula-
rization are analyzed. The consistency (convergence to Bayes
risk) of regularized boosting is discussed in [24]; recently, the
authors of [25] proved that AB is almost surely consistent
if its growing is stopped early enough. Other approaches
reducing the sensitivity of boosting algorithms with respect to
clearly misplaced samples can be found in [26], where the data
skewness is penalized to prevent the effects of these samples;
in [27], which maximizes the mean and minimizes the variance
of the margin; in [28] [29], that replace the MM cost terms
by adjustable combinations of quadratic error and proximity
to the decision border; and in [30], which uses controlled
subsampling to reduce the problem.

There is a large quantity of boosting algorithms that are
modifications of basic AB and RAB. To mention just a few:
Those based on the idea of leveraging [31], presented in [32]
[33]; DOOM (Direct Optimization Of Margin) [34]; Any-
Boost and MarginBoost [35]; formulations to accommodate
linear classifiers as learners [36] [37]; methods that exploit
the vision from a logistic regression perspective [38] and
using stochastic search for residual fitting [39]; cost-sensitive
algorithms [40]; procedures for optimally boosting classifiers
[41]; and algorithms resulting from dual formulations [42].
There are versions for imbalanced data problems [43] and for
semisupervised learning [44] [45]. Boosting has been used to
select kernels [46] [47]. Finally, it is worth saying that there are
recent works that combine boosting with other techniques —
with nonlinear projections [48] or with Rotation Forests [49],
for example—.

Another important family of ensembles that has deserved
attention is Mixtures of Experts (MoE) [50]. When considering
regression problems, they are based on assuming a Gaussian
mixture model with a linear mean for the “a posteriori”
probability of the unknown variable and a softmax linear form
for the mixing coefficients. Using Maximum Likelihood (ML)
as the objective to parameterize these models seems to be
enough to control overfitting. The formulation for classifica-
tion is obtained by using the exponential form of the target
binary distribution and logistic activations for the experts.
Direct or Iterative Reweighted Least Squares versions of the
Expectation-Maximization algorithm can be used to train the
corresponding schemes [51] [52]. More expressive capacity
is available from hierarchical architectures [51]–[54], using
Multilayer Perceptrons (MLPs) as learners [55], introducing
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more powerful gates such as MLPs [56]–[58] or including
attentional mechanisms for fusion [59].

MoE are related to stacking [60], and there are several
modifications of them, such as those presented in [61] [62].
Among these modifications, there are constructive versions
[54] [63] as well as temporal schemes [64], and procedures
that use Dirichlet processes mixtures or as priors [65] [66]. Pa-
rameterization algorithms using global searches are proposed
in [67]–[69]. The consistency of MoE classifiers using logistic
regression units has also been studied in [70].

MoE offered satisfactory results in may practical applica-
tions such as speech recognition [53] [62], time series analysis
[56]–[58] [64] [71] [72], handwritten character recognition
[61] [62] [68], AIDS prognosis [73], and face recognition
[74]. Nevertheless, contributions to MoE literature are less
frequent in recent years, maybe because the great success of
other ensemble families, such as boosting methods. However,
MoE bases are solid, and MoE concepts, useful. They have
been used to mix MM trained linear classifiers [75]; in [76],
the authors reorder the MoE basic formula to obtain a similar
but more compact architecture which can be trained with MM
algorithms.

B. The conceptual bases of the proposed ensemble architec-
ture

The fusion scheme of AB’s and RAB’s weak learners is
a linear combination by means of weights that minimize
an exponential margin error and are easily calculated. This
may limit the ensemble performance when using global weak
learners -such as trees and simple MLPs, that are frequently
boosted-, because the overall ensemble architecture is also
purely global.

Using local learners can alleviate this limitation. Several
studies have considered stumps as learners. In [77], learners
specialize in different regions. R̈atsch et al. [78] analyzed the
effects of using local learners. In [79], localization is based on
applying local likelihoods, while in [80] kernels are included
in learners. A local error measure is applied in [81]. These
approaches demonstrate some advantages, but it seems clear
that using local learners does not serve “per se” to limit
the negative effects of strongly emphasizing clearly erroneous
samples.

On the contrary, MoE include a trainable gate, a more
sophisticate and powerful fusion technique. Consequently, it is
tempting to try to obtain a further increase of the capabilities
of boosting schemes by replacing their linear combination by a
trainable gate. In fact, this was explored in [82] as an iterative
construction of a functional convex combination, but underan
ML parameterization.

Following this idea, in this paper a new boosting approach
including a gate network in the learner fusion process is
introduced. This new method, called Gate Controlled Fusion
RAB (GCF-RAB), will retain the good properties of standard
RAB algorithm but it would provide the ensemble improved
convergence and generalization capabilities. As we will ex-
plain later, a local gate with intermediate expressive power is
an attractive option, because it can serve to reduce the effects

of overweighting clearly wrongly classified samples. Note that
the gate has to be trained just for fusion purposes; in other
case, we would tend to work with stronger learners. Since
the excellent results provided by arcing ensembles (including
boosting schemes) can be attributed to emphasizing weak
learners training and, after it, combining them, to explorehow
a locally gated RAB machine works is definitely interesting.
In fact, we obtained promising preliminary results following
this research line [83].

The rest of the paper is organized as follows: In Section II,
we introduce the general structure of the proposed classifica-
tion ensemble, discussing how to train its learnable parameters
and different possibilities to select its design parameters by
means of cross-validation (CV). Section III describes the
experimental framework, shows the simulation results, and
comparatively discusses the performance of the new ensemble,
without forgetting sensitivity and computational load aspects.
Finally, Section IV presents the conclusions of our work and
suggests some further research directions.

II. GATE CONTROLLED FUSION REAL ADABOOST

(GCF-RAB)

A. The basic structure

To avoid serious algorithmic difficulties in training and an
excessive operation load, a common gate body consisting of
Gaussian kernels with selected centroids will be used for all
the fusion steps, its output weights being trained for each
epoch.

We will consider binary problems. Then, we have the output
of the ensemble ofT learners is

FT (x) =

T
∑

t=1

αt(x)ft(x) (1)

whereαt and ft ∈ [−1, 1] are the overall gate and the base
learners output at roundt, respectively. Decision is made
according to

d̂(x) = sgn[FT (x)] (2)

where sgn is the standard sign function.
Base learners are trained in the conventional RAB form

using the labeled data set
{

x
(l), d(l)

}L

l=1
, where

{

x
(l)
}

are
the samples and

{

d(l) ∈ {±1}
}

their targets, respectively.
Each base learner is parameterized to minimize the weighted
squared error

Et =

L
∑

l=1

Dt(l)
[

d(l) − ft(x
(l))

]2

(3)

Dt being the well-known RAB emphasis function

Dt+1(l) =
Dt(l)exp

[

−αt(x
(l))ft(x

(l))d(l)
]

Zt

(4)

whereZt is a normalization factor to force
∑L

l=1 Dt+1(l) = 1,
and the process starts withD1(l) = 1/L, ∀l.

As above said,
αt(x) = w

T
t a(x) (5)
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Fig. 1. (a) Real AdaBoost architecture; (b) Gate ControlledFusion Real AdaBoost architecture.

where wt is the output weight vector of the gate for base
learner ft, and a(x) = [a0(x), a1(x), . . . , aN (x)]

T the
output vector of the Gaussian functions of the gate body,
having elements

an(x) =

{

1, n = 0

exp
(

−‖x− cn‖
2
/2σn

2
)

, 1 ≤ n ≤ N
(6)

{cn} being the centroids, that are separately selected, and
{

σn
2
}

the dispersion parameters, that can be selected as
explained later. Fig.1 shows the proposed GCF-RAB archi-
tecture, comparing it with the standard RAB. Learningwt is
carried out to minimize the overall cost function of the RAB
algorithm

Bt =
1

L

L
∑

l=1

exp
[

−d(l)Ft(x
(l))

]

(7)

whereFt(x) is the partial ensemble obtained at epocht

Ft(x) =
t

∑

t′=1

αt′(x)ft′(x) = Ft−1(x) + αt(x)ft(x) (8)

The reason for adopting this cost is to retain the good
generalization properties of the classical RAB algorithm.

Since
∂exp

[

−d(l)Ft(x
(l))

]

∂wt

=

= −d(l)ft(x
(l))exp

[

−d(l)Ft(x
(l))

]

a(x(l)) (9)

the stochastic descent algorithm

wt(l
′ + 1) = wt(l

′) + ηd(l
′)ft(x

(l′)).

.exp
[

−d(l
′)Ft(x

(l′))
]

a(x(l′)) (10)

can be applied to samples cyclically ordered (indexl′).

B. Selecting centroids

Training centroids and dispersion of exponentials has been
considered a difficult task, and most the corresponding ma-
chine designs have been based on defining them by means of
a separate procedure. For regression, after the pioneeringpro-
posal of Moody and Darken [84], suggesting to select K-means
vectors as centroids, a large number of proposals appeared:
A sequential selection based on Orthogonal Least Squares
(OLS) [85], constructive methods like resource allocation[86]
and growing cell structure [87], and some refined clustering
algorithms [88] [89], among others.

In the case of decision machines, things are different
because border location is important. In fact, although RAB
emphasizes erroneous samples, the resulting machines focused
mainly in examples that are near the classification borders [90].
[91] and [92] select centroids among clustering representative
vectors; considering methods that select sample vectors as
exponential function centroids, [93] presents a series of possi-
bilities after a first cluster selection, while [94] proposes to use
just the support vectors of Support Vector Machine designs.
The idea of usingK-Nearest Neighbors (K-NN) algorithms
to select samples according to their proximity to the border
and their easy classification appears in [95]–[98]; here, wewill
start from it for designing our machine ensembles.

In [95], Shin and Cho introduce two quantitative measures
to be used for selecting data, “proximity”,pr(x(l)), and
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“correctness”,co(x(l)). These measures are obtained fromK-
NN based estimates of the probabilities ofx

(l) belonging to
classj (j ∈ {±1})

Pj(x
(l)) =

Kj

K

K and Kj being the total number of nearest neighbors
considered and the number of these belonging to classj,
respectively.

It is obvious that

pr(x(l)) =
∑

j

Pj(x
(l)) log2

1

Pj(x(l))
(11)

is higher for samples whose neighbors have mixed labels, i.e.,
for samples that are near the classification border, while

co(x(l)) = Pd(l)(x(l)) (12)

is the estimated probability of a correct classification ofx
(l).

Preselecting those samples that offer

pr(x(l)) > 0 and co(x(l)) ≥
1

2
(13)

is a satisfactory mode of selecting reasonable (near to the
border and relatively easy to classify) candidates to serveas
Gaussian centroids.

To complete the selection of centroids avoiding to include
samples that appear in the same regions of the observation
space, we apply the Adaptive Pattern Classifier III clustering
algorithm [99] ideas. For each class, the first centroid is the
preselected sample which shows the highest proximity value;
all the samples in a sphere of radiush around it are eliminated,
and the process is iterated until no more samples are available.

The value ofh can be obtained by means of CV ofR in
the expression

h = R
1

L

L
∑

l=1

∥

∥

∥
x
(l) − x

(l)
NN

∥

∥

∥

2
(14)

wherex(l)
NN indicates the nearest neighbor ofx

(l).
With respect to the value ofK, a possible option is to

select it by CV. To reduce the design computational effort,
the empirical procedure of [96] can be used. This procedure
consists of applying an1-NN classifier on the training set;
then,K is iteratively increased until the number of preselected
samples according to (13) is not less than2LP̂e, whereP̂e is
the 1-NN estimate of the classification error probability.

C. Selecting the dispersion parameters

We will consider two different strategies to select the
dispersion parameters:

- The first is accepting dispersion values that are pro-
portional to the average Euclidean distance betweencn

and all samples that are nearer to it than to the rest of
centroids, i.e.

σn = r
1

card Cn

∑

x
(l)∈Cn

∥

∥

∥
x
(l) − cn

∥

∥

∥

2
(15)

whereCn is the corresponding set of samples andcard
indicates cardinality. Scale factorr can be determined
by means of CV.

- The second directly uses as dispersion the sphere radius
(h) of the APC-III algorithm (which also requires a CV
process).

III. E XPERIMENTS AND THEIR DISCUSSION

In order to evaluate the performance of the proposed
method, we will apply it to some well-known benchmark
problems with different characteristics (size, dimension, and
difficulty) and compare the obtained results with those pro-
vided by a standard RAB ensemble.

A. Benchmark problems

We consider eight problems. Two of them are synthetic,
Kwok [100] and Ripley [101], and the other six are real data
sets, five from the UCI repository [102] (Abalone, Breast,
Contraceptive, Hepatitis, and Ionosphere), and one from [103],
Crabs. Table I shows their main characteristics (D: dimension;
L1/L−1: number of samples) for the training and the test sets.
Problems are named with their first two letters.

TABLE I
MAIN CHARACTERISTICS OF THE BENCHMARK PROBLEMS

Problem D L1/L−1 Train L1/L−1 Test

Ab 8 1238/1269 843/827

Br 9 145/275 96/183

Co 9 506/377 338/252

Cr 7 59/61 41/39

He 19 70/23 53/9

Io 34 101/100 124/26

Kw 2 300/200 6120/4080

Ri 2 125/125 500/500

B. Versions of the GCF-RAB algorithm

We consider the two strategies presented above to define
dispersion parameters, calling them S1 and S2. WhenK is
selected according to the empirical rule given in [96], we
indicate the corresponding reduced versions as S1(R) and
S2(R), respectively.

C. Trainable parameters

Both RAB and GCF-RAB ensembles have Multi-Layer Per-
ceptrons (MLPs) with one simple hidden layer ofM neurons
as base learners,M being established by means of CV. Each
MLP is trained with the standard Back-Propagation algorithm
to minimize (3), initializing all the weights at random values
from a [−0.2, 0.2] uniform distribution, while the learning rate
for both layers linearly decrease from 0.01 to 0 along 100
epochs, that are enough to reach convergence. An 80/20 early
stopping mode is applied to stop training.

With respect to gate weights, they are randomly initialized
with values of a [−0.05, 0.05] uniform distribution, and a
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TABLE II
CLASSIFICATION ERROR RATES(CE) PROVIDED BY RAB ENSEMBLE AND THE DIFFERENT APPROACHES OF THE PROPOSEDGCF-RAB ALGORITHM .

THE NUMBER OF LEARNERS(T ) AND THE PARAMETERS CHARACTERIZING EACH ENSEMBLE ARE ALSO INCLUDED.

RAB GCF-RAB

S1 S2 S1(R) S2(R) Omniscient

M M/N/K/R/r M/N/K/R M/N/K/R/r M/N/K/R M/N/K/R/r
CE(%) 19.4± 0.02 19.1± 0.3 19.3± 0.3 19.1± 0.3 19.3± 0.3 19.0± 0.4

Ab T 31.2± 0.4 16.3± 0.4 30.5± 0.9 19.0± 0.4 29.2± 0.8 16.0± 0.5
Param. 4 2/50/6/6.2/1 2/7/6/34.5 2/7/4/34.5/1 2/7/4/34.5 2/405/10/1.0/2.5
CE(%) 2.6± 0.4 2.2± 0.3 2.3± 0.4 2.4± 0.3 2.4± 0.5 2.2± 0.3

Br T 21.3± 4.2 16.1± 0.8 18.0± 1.2 18.2± 0.7 32.6± 1.0 16.4± 1.3
Param. 6 2/18/8/11.3/3.5 2/18/2/1.0 2/4/3/24.2/1 6/7/3/11.3 2/10/4/11.3/3.5
CE(%) 29.0± 0.2 27.4± 0.8 28.1± 0.8 28.2± 0.8 28.2± 0.8 27.4± 0.5

Co T 33.7± 0.7 21.7± 1.1 29.7± 0.7 29.9± 1.4 30.4± 1.2 21.4± 0.5
Param. 2 2/165/3.6/3.5 2/8/4/34.5 2/48/2/11.3/1 2/17/2/24.2 2/21/4/21.6/3.0
CE(%) 2.5± 0.0 2.5± 0.0 2.5± 0.0 2.5± 0.0 2.5± 0.0 2.5± 0.0

Cr T 11.1± 0.8 16.1± 0.5 8.1± 0.2 19.3± 0.6 31.5± 0.9 16.1± 0.4
Param. 2 2/34/8/1.0/1.5 2/11/2/1.0 2/7/2/1.0/1 2/7/2/1.0 2/11/2/1.0/1
CE(%) 8.9± 1.8 8.1± 1.9 8.4± 1.8 8.5± 1.5 8.5± 1.7 7.7± 1.3

He T 22.2± 3.9 15.6± 1.8 18.7± 2.5 16.9± 1.9 27.5± 2.0 16.1± 1.1
Param. 17 4/20/4/3.6/4 4/3/2/21.6 6/2/2/39.7/0.5 4/2/2/31.9 4/2/6/26.8/2
CE(%) 4.5± 0.9 4.0± 1.0 4.2± 1.7 4.1± 1.5 4.0± 1.6 3.8± 1.8

Io T 22.2± 2.4 17.3± 1.7 24.9± 1.9 19.1± 5.4 26.9± 3.6 17.7± 4.3
Param. 5 2/10/6/34.5/3 2/66/10/1.0 2/8/2/26.8/2.5 6/21/2/6.2 4/66/10/1.0/2.5
CE(%) 11.7± 0.01 11.7± 0.2 11.7± 0.1 11.7± 0.2 11.7± 0.2 11.7± 0.1

Kw T 29.3± 0.1 19.8± 1.1 29.0± 1.2 28.8± 1.2 36.3± 1.4 20.5± 1.1
Param. 15 2/4/6/31.9/2 2/7/10/16.5 4/4/2/31.9/1 4/4/2/42.3 2/10/4/11.3/3.5
CE(%) 9.7± 0.01 8.5± 0.2 8.6± 0.3 9.1± 0.2 9.2± 0.3 8.4± 0.3

Ri T 28.9 ±0.2 17.9± 0.6 25.6± 0.5 24.2± 2.3 33.4± 0.7 17.8± 0.5
Param. 48 2/31/10/1.0/2 6/10/4/6.2 6/5/2/21.6/0.5 2/6/2/16.5 6/31/10/1.0/2

learning rate of 0.01 is used for their stochastic gradient
updating 100 epochs are enough for convergence.

To stop the ensemble construction, we apply to RAB the
criterion successfully used in [29], selectingT as the first value
for which

∑T

t=T−9 αt
∑T

t=1 αt

< C (16)

whereC is empirically set to 0.1. Similarly, we use for the
GCF-RAB

∑T

t=T−9 γt
∑T

t=1 γt
< C ′ (17)

with C ′= 0.3, where

γt =
L
∑

l=1

Dt(l)Ft(x
(l))d(l) (18)

which, when the learners are not able of classifying the most
emphasized (erroneous) data, takes low values and hardly
changes.

D. Selection of design parameters

A 50 runs, 5-fold cross-validation (CV), is used to select
the nontrainable parameters; these parameters are explored in
the following margins:

• M (number of hidden units of MLPs): from 2 to 10 in
unitary steps;

• K (number of nearest neighbors in non-reduced strate-
gies): 2,4,6,8,10 and 12;

• R (scale factor forh): from 1 to 50 with 20 equal steps;

• r (scale factor for the first strategy to select dispersion
parameters): from 0.5 to 5 in 0.5 steps.

No extensions of these margins are needed except for param-
eterM in the RAB algorithm and Ri problem, which needs
an extension up to 60.

E. Results and their discussion

Table II shows the Classification Error (CE) rates obtained
from averaging the results corresponding to 50 design runs
(of MLPs) for each ensembles using the parameters given by
the CV processes, that are also given, as well an the average
number of learners (T ). For CE andT , both average values
and standard deviations are included. Best results are indicated
in boldface. It can be seen in Table II that none of the proposed
GCF-RAB algorithms offers a worse performance than the
conventional RAB. As expectable, Version S1 gives the best
results, with the highest differences when compared to RAB
for problems Br, He, Io, and mainly Ri, while RAB only
provides an equivalent performance for Cr and Kw. Version S2
offers slightly worse results than Version S1, but, we repeat,
never worse than RAB. This quality reduction can be attributed
to the fact of restricting Gaussian dispersion parameters to
just the same value ofh. Finally, (reduced) Versions S1(R)
and S2(R) provide, in general, worse performance results than
Versions S1 and S2, respectively (but S2(R) is better than S2
for Io), but, again, never worse than RAB, although the direct
way of establishingK limits their quality.

So, we can conclude that, generally speaking, the idea of
introducing a gate to combine learners’ outputs under a RAB
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Fig. 2. Classification error rate (CE) evolution along training epochs for conventional RAB and GCF-RAB methods S1 and S2 for problems Co(a), Ab(b),
Kw(c), and Br(d).

formulation serves to improve the performance of the resulting
designs. Obviously, this is not for free, since training gate’s
weights and, specially, the costly CV process greatly increase
the design computational effort (several orders of magnitude).
This is the prize for improving the excellent results of RAB
ensembles. Nevertheless, it can be seen also in Table II that, in
many cases, the GCF-RAB designs require a lower (average)
number of learners and a lower number of hidden neurons for
the MLP learners. Since each complete learning element of a
GCF-RAB consists not only on the corresponding MLP, but
it includes the gate multiplications, more detailed calculations
are needed to check if there is also computational advantage
in the operation phase, i.e., when the ensembles are used to
classify new patterns. These calculations are presented below.

F. A look to sensitivity problems

Although the proposed designs exhibit an excellent per-
formance, it is adequate to analyze if the always delicate
CV processes introduce some degree of lack of robustness
with respect to the corresponding parameters. To study the

sensitivity of the proposed designs with respect to all these
parameters (M , h or N , K for S1 and S2, andr for S1 and
S1(R)) is a difficult task. However, the possibility of using
the concept of “omniscient” machines serves to carry out a
sufficient analysis.

An “omniscient” machine —obviously not a valid design—
is a machine where non-trainable parameters are selected
according to the measured performance in the test set. If there
are small differences between the corresponding parameter
values and those values obtained from CV, the CV process
has been fully successful. If there are differences but the
performance is similar, it is a symptom of CV difficulties due
to a relatively flat error surface considered as a function ofthe
CV parameters, but the resulting designs can be considered
acceptable —their performance is good enough—.

The last column of Table II shows the characteristics of
the omniscient ensembles for the more delicate family of
designs, Version S1. It is clear that a completely successful CV
cannot be claimed, since there appear significant differences
between parameter values. However, it is also evident that
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performance differences are irrelevant for Br, Co, Cr, and Kw,
nearly irrelevant for Ab and Ri, and not so important for He
and Io. Consequently, we can conclude that the design methods
that have been followed for the proposed GCF-RAB ensemble
architectures show a satisfactory degree of robustness.

G. Convergence

Since we include a trainable fusion scheme, there is the
possibility of having more intensive convergence problems
with CGF-RAB methods than when applying conventional
RAB. So, to check how convergence believes along training
epochs is interesting.

In Fig. 2, we show howCE evolves for four representative
problems:

• Co (He is qualitatively equivalent)
• Ab
• Kw (Cr and Io are qualitatively equivalent)
• Br (Ri is qualitatively equivalent)

for conventional RAB and proposed methods S1 and S2, that
are the most relevant.

Generally speaking, convergence problems do not appear,
and the (average) stopping epochs seem to be reasonable.

In the case of Co, convergence curves show the usual forms,
and it is clear that the advantage of S1 and S2 appears very
early. The stopping points reveal the advantage of the new
methods with respect to conventional RAB with respect to
the number of learners. However, let us remark that this does
not mean that S1 and S2 learning is easier than training a
conventional RAB. On the contrary, the needs of establishing
the number of gate RBFs by CV and of training gate output
weights at each step lead to a clearly higher computational
effort to train S1 and S2 architectures. Even the operation load
—i.e., the computational effort which is needed to classify a
new sample— does not depend only on the number of learners,
because there are calculations related to the gate. Since itcan
be observed in Table II that the complexity of learners is also
usually lower for GCF-RAB methods than for conventional
RAB, a more detailed evaluation is necessary. We present this
evaluation later.

Considering problem Ab, the only remarkable difference is
that the advantage of S1 with respect to RAB needs a relative
high numbers of training epochs to appear.

Kw shows that initial RAB convergence is faster than
those of S1 and S2. Although the stopping criterion leads to
more epochs for conventional RAB, it can be seen that near-
optimum designs could be obtained very early.

Finally, Br curves show that the optimal designs perfor-
mances are as usual (S1 is better than S2, and S2 better
than conventional RAB). However, is must be emphasized
that S1 training shows a relatively clear effect of overfitting.
This is probably due to the high expressive power of the
learner-gate combinations. Consequently, some vigilanceto
avoid overfitting must be applied in the design processes of
the GCF-RAB machines.

H. Classification load

A reasonable estimate of the computational effort which
is needed to classify a new sample comes from considering

the corresponding number of multiplications and, if Look-
Up-Tables (LUTs) are not used to obtain the outputs of the
nonlinear transformations, the number of such transformations.
(Note that we do not distinguish between exponentials and
sigmoids, which is in favour of standard RAB schemes).

With respect to the number of multiplications:

• To obtain the argument of each gate element,D multipli-
cations are needed for the squared distance, and the result
has to be multiplied by1/2σ2

n. So, a total number of
N(D+1) multiplications are necessary for each ensemble
step.

• To get each output of the gate,N additional multiplica-
tions are needed.

• An MLP with M hidden neurons requiresMD (input
layer) plusM (output layer) multiplications.

• For standard RAB schemes, one more multiplication (by
αt) is needed for each step. The same is true for GCF-
RAB ensembles if we add gate element outputs before
multiplying.

Thus, if T is the number of base learners, a RAB ensemble
needsT (M(D+1)+1) products, and a GCF-RAB ensemble
requiresT (M(D + 1) +N + 1) +N(D + 1) products.

Table III.A shows the average values corresponding to
the designs we have obtained for the eight problems under
analysis. Note that, if LUTs are used, those values indicate
the classification computational load.

It is easy to see that standard RAB architectures require less
multiplications to classify a new sample for problems Co and
Cr, and also less than S1 for Ab and less than S2 and S2(R)
for Io. In all the other cases, GCF-RAB ensembles need less
multiplications than standard RAB (note that the best casesare
shown in boldface). Thus, a computational advantage of the
proposed designs is not unexpectable, but it seems to appear
frequently.

If nonlinear transformation values are calculated, the com-
putational load has an additional component which depends on
the number of nonlinear elements included in each machine
ensemble; i.e.,T (M+1) for RAB andT (M+1)+N for GCF-
RAB designs. Table III.B shows the corresponding values.

Although to provide a good comparison in this case requires
to know an equivalent number of multiplications for each
nonlinearity (in the practice, a relatively high number), for the
problems and designs we are considering things are relatively
clear. With the only possible doubt of S1 for Ab, GCF-RAB
classifications are computationally less expensive than RAB
for Ab, He, Kw, and Ri, and some of them also for Br
and Io. The only problems that lead to less computationally
demanding RAB architectures are Co and Cr (note that Cr is a
curious case which originates designs of equal performance).

According to the above, it can be said that GCF-RAB
ensembles offer the possibility of obtaining not only better
performance, but even less classification effort in comparison
with standard RAB schemes.

IV. CONCLUSIONS

This paper proposes a new approach to include a kernel
type gate to combine learners’ outputs in a Real AdaBoost
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TABLE III
NUMBER OF MULTIPLICATIONS AND NUMBER OF NONLINEAR FUNCTIONSTO CLASSIFY A NEW PATTERN BY EACH ENSEMBLE

Problem
A. Number of multiplications B. Number of nonlinear functions

RAB GCF-RAB RAB GCF-RAB
S1 S2 S1(R) S2(R) S1 S2 S1(R) S2(R)

Ab 1154.4 1574.7 856.0 557.0 882.2 156.0 98.9 98.5 64.0 94.0

Br 1299.3 807.9 882.0 495.0 2286.8 149.1 66.3 72.0 58.6 235.2

Co 707.7 5686.2 941.3 2543.1 1325.2 101.1 230.1 97.1 137.7 108.2

Cr 188.7 1093.1 314.8 519.2 812 33.3 82.3 35.3 64.9 101.5

He 7570.2 1975.6 1630.8 2118.7 2322.5 399.6 98.0 96.5 120.3 139.5

Io 3907.2 1751.3 5721.3 1788.9 6975.8 132.2 61.9 140.7 65.3 209.3

Kw 1347.8 229.8 427.0 501.6 629.1 468.8 63.4 94.0 148.0 185.5

Ri 4190.5 773.2 772.4 595.8 452.1 1416.1 84.7 189.2 174.4 106.2

ensemble construction, leading to the Gate Controlled Fusion
Real AdaBoost ensembles. The advantages of this proposal
has been experimentally checked for a series of different
design procedures, obtaining systematically positive answers.
This way, one more method to cope with Real AdaBoost
intrinsic limitations has been made available. Additionally,
the robustness of the corresponding designs, that need a
computationally costly Cross-Validation process, has also been
checked.

The price for increasing the already good performance of
Real AdaBoost algorithms is an important increase in the
design computational effort (up to several orders of magni-
tude), mainly due to Cross-Validation explorations. However,
a detailed analysis has shows that, in many cases, the operation
load (computational effort to classify new samples) of the
proposed ensembles is lower than the load of conventional
Real AdaBoost algorithms.

Besides the opportunities of improving the particular de-
signs that are proposed here, their base —to combine strong
aspects of Real AdaBoost and Mixtures of Experts— opens the
door for investigating other principled procedures to combine
local and global (weak) learning machines.
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Politécnica de Madrid. In 2007, she obtained the
PhD from Universidad Carlos III de Madrid, where
she is currently a Visiting Professor in the Depart-
ment of Signal Theory and Communications. Her
research interests are related to the machine learning
algorithms, mainly neural network ensembles and
boosting methods. She has coauthored around 20
papers, including journal and conference contribu-

tions. She has participated in several R+D projects with public funding and
companies, what has provided her with an extensive experience in solving
real-world problems.

Anı́bal R. Figueiras-Vidal (S’74-M’76-SM’84)
received the Telecommunication Engineer degree
(honors) from Universidad Politécnica de Madrid,
Madrid, Spain, in 1973, and the Doctor degree
in Telecommunication Engineering (honors) from
Universidad Polit́ecnica de Barcelona, Barcelona,
Spain, in 1976. Currently, he is a Professor of
Signal Theory and Communications at Universidad
Carlos III de Madrid. He has (co)authored more than
350 journal and conference papers in areas of his
interests. His present research covers digital signal

processing, neural networks, and learning theory. He is a Member of the Spain
Royal Academy of Engineering. Dr. Figueiras-Vidal has received “Honoris
Causa” doctorate degrees from Universidad de Vigo, Vigo, Spain, in 1999,
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